lm4 <- lm(logMaxAbund ~ logMass, data=bird, subset=bird$Passerine == 1) # Examine the diagnostic plots opar <- par(mfrow=c(2,2)) plot(lm4) summary(lm4) par(opar) # Compare variance explained by lm2, lm3 and lm4 str(summary(lm4)) # Recall: we want adj.r.squared summary(lm4)$adj.r.squared # R2-adj = -0.02 summary(lm2)$adj.r.squared # R2-adj = 0.05 summary(lm3)$adj.r.squared # R2-adj = 0.25 # Visually compare the three models opar <- par(mfrow=c(1,3)) plot(logMaxAbund ~ logMass, data=bird, main="All birds", ylab = expression("log"[10]*"(Maximum Abundance)"), xlab = expression("log"[10]*"(Mass)"), pch=19, col="yellowgreen") abline(lm2,lwd=2) plot(logMaxAbund ~ logMass, subset=Passerine == 1, data=bird, main="Passerine birds", ylab = expression("log"[10]*"(Maximum Abundance)"), xlab = expression("log"[10]*"(Mass)"), pch=19, col="violet") abline(lm4,lwd=2) plot(logMaxAbund ~ logMass, data=bird, subset=!bird$Aquatic, main="Terrestrial birds", ylab = expression("log"[10]*"(Maximum Abundance)"), xlab = expression("log"[10]*"(Mass)"), pch=19, col="skyblue") abline(lm3,lwd=2) par(opar)