# Calculer le nombre de colonnes M<-ncol(spe.challenge) # Calculer les différences d'abondance de chaque espèce entre paires de sites Spe1.s1s2<-abs(spe.challenge[1,1]-spe.challenge[2,1]) Spe2.s1s2<-abs(spe.challenge[1,2]-spe.challenge[2,2]) Spe3.s1s2<-abs(spe.challenge[1,3]-spe.challenge[2,3]) Spe1.s1s3<-abs(spe.challenge[1,1]-spe.challenge[3,1]) Spe2.s1s3<-abs(spe.challenge[1,2]-spe.challenge[3,2]) Spe3.s1s3<-abs(spe.challenge[1,3]-spe.challenge[3,3]) Spe1.s2s3<-abs(spe.challenge[2,1]-spe.challenge[3,1]) Spe2.s2s3<-abs(spe.challenge[2,2]-spe.challenge[3,2]) Spe3.s2s3<-abs(spe.challenge[2,3]-spe.challenge[3,3]) # Calculer l'étendue d'abondance de chaque espèces parmi les sites Range.spe1<-max(spe.challenge[,1]) - min (spe.challenge[,1]) Range.spe2<-max(spe.challenge[,2]) - min (spe.challenge[,2]) Range.spe3<-max(spe.challenge[,3]) - min (spe.challenge[,3]) # Calculer la distance de Gower (dg.s1s2<-(1/M)*((Spe2.s1s2/Range.spe2)+(Spe3.s1s2/Range.spe3))) (dg.s1s3<-(1/M)*((Spe2.s1s3/Range.spe2)+(Spe3.s1s3/Range.spe3))) (dg.s2s3<-(1/M)*((Spe2.s2s3/Range.spe2)+(Spe3.s2s3/Range.spe3))) # Vérifier vos résultats (spe.db.challenge<-vegdist(spe.challenge, method="gower"))